

Higher Mathematics

Specimen NAB Assessment

HSN21510

This document was produced specially for the HSN.uk.net website, and we require that any copies or derivative works attribute the work to Higher Still Notes.

For more details about the copyright on these notes, please see http://creativecommons.org/licenses/by-nc-sa/2.5/scotland/

3

1

UNIT 1

Specimen NAB Assessment

Outcome 1

- A line passes through the points A(4,-3) and B(-6,2).
 Find the equation of this line.
- 2. A line makes an angle of 40 with the positive direction of the *x*-axis, as shown in the diagram.

Find the gradient of this line.

3. (a) Write down the gradient of a line parallel to y = 4x + 1.
(b) Write down the gradient of a line perpendicular to y = 4x + 1.
1

Outcome 2

4. The diagram below shows part of the graph of y = f(x).

- (a) Sketch the graph of y = -f(x). 1
- (b) On a separate diagram, sketch the graph of y = f(x+4).

1

5. (a) The diagram below shows the curve $y = \sin x$ and a related curve.

Write down the equation of the related curve.

(b) The diagram below shows the curve $y = \cos x$ and a related curve.

Write down the equation of the related curve.

6. The curve $y = a^x$ is shown in the diagram below.

Given that the curve passes through the point (1,3), write down the value of *a*.

7. The diagram below shows the graph of the function $f(x) = 2^x$ and its inverse function.

Write down the formula for the inverse function.

1

1

1

1

- 8. (a) Two functions f and g are defined by $f(x) = x^3$ and g(x) = 2x 4. Find an expression for f(g(x)).
 - (b) Functions h and k are defined on suitable domains by h(x)=5x and k(x) = tan x.
 Find an expression for k(h(x)).

- 9. Given that $y = \frac{x^5 3}{x^3}$ for $x \neq 0$, find $\frac{dy}{dx}$. 4
- 10. The curve with equation $y = x^2 5x + 6$ is shown below.

Find the gradient of the tangent to the curve at the point (5,6).

11. A curve has equation $y = \frac{1}{3}x^3 - 4x^2 + 12x - 3$.

Find the stationary points on the curve and, using differentiation, determine their nature.

Outcome 4

- 12. A pond is treated weekly with a chemical to ensure that the number of bacteria is kept low. It is estimated that the chemical kills 68% of all bacteria. Between the weekly treatments, it is estimated that 600 million new bacteria appear. There are u_n million bacteria at the start of a particular week.
 - (a) Write down a recurrence relation for u_{n+1} , the number of millions of bacteria at the start of the next week.
 - (b) Find the limit of the sequence generated by this recurrence relation and explain what the limit means in the context of this question.

1

3

4

8

1

Marking Instructions

).	(a) $y = \sin x - 2 \checkmark$	• Identify equation	1		
	(b) $y = \frac{1}{2}\cos x \checkmark$	• Identify equation	1		
6.	Since $y = 3$ when $x = 1$:	• State the value of <i>a</i>			
	$a^1 = 3$				
	$a = 3 \checkmark$		1		
7.	$f^{-1}(x) = \log_2 x \checkmark$	• State formula for inverse	1		
8.	(a) $f(g(x)) = f(2x-4)$	• Expression for			
	$=(2x-4)^3 \checkmark$	composite function	1		
	(b) $k(h(x)) = k(5x)$	• Expression for			
	$= \tan 5x \checkmark$	composite function	1		
Ou	Outcome 3 – Differentiation				
	x^{5} 3	• Simplify first term			
9	$y = \frac{\pi}{2} - \frac{5}{2}$				
9.	$y = \frac{x}{x^3} - \frac{y}{x^3}$	• Simplify second term			
9.	$y = \frac{x}{x^3} - \frac{3}{x^3}$ $= x^2 \sqrt{-3} x^{-3} \sqrt{-3}$	Simplify second termDifferentiate first term			
9.	$y = \frac{x}{x^3} - \frac{3}{x^3}$ $= x^2 \sqrt{-3} x^{-3} \sqrt{-3} $	 Simplify second term Differentiate first term Differentiate second 			
9.	$y = \frac{x}{x^3} - \frac{3}{x^3}$ $= x^2 \sqrt{-3} x^{-3} \sqrt{-3}$ $\frac{dy}{dx} = 2x \sqrt{+9} x^{-4} \sqrt{-3}$	 Simplify second term Differentiate first term Differentiate second term 	4		
9.	$y = \frac{x}{x^{3}} - \frac{y}{x^{3}}$ $= x^{2}\sqrt{-3}x^{-3}\sqrt{-3}$ $\frac{dy}{dx} = 2x\sqrt{+9}x^{-4}\sqrt{-3}$ Gradient of tangent is given by $\frac{dy}{dx} = \sqrt{-3}x^{-4}\sqrt{-3}$	 Simplify second term Differentiate first term Differentiate second term Know to differentiate 	4		
9. 10.	$y = \frac{x}{x^{3}} - \frac{y}{x^{3}}$ $= x^{2}\sqrt{-3}x^{-3}\sqrt{-3}$ $\frac{dy}{dx} = 2x\sqrt{+9}x^{-4}\sqrt{-3}$ Gradient of tangent is given by $\frac{dy}{dx}\sqrt{-3}$	 Simplify second term Differentiate first term Differentiate second term Know to differentiate Differentiate 	4		
9.	$y = \frac{x}{x^3} - \frac{y}{x^3}$ $= x^2 \sqrt{-3} x^{-3} \sqrt{-3} $	 Simplify second term Differentiate first term Differentiate second term Know to differentiate Differentiate Know to evaluate 	4		
9.	$y = \frac{x}{x^3} - \frac{y}{x^3}$ $= x^2 \sqrt{-3} x^{-3} \sqrt{-3}$ $\frac{dy}{dx} = 2x \sqrt{+9} x^{-4} \sqrt{-3}$ Gradient of tangent is given by $\frac{dy}{dx} \sqrt{-3}$ $\frac{dy}{dx} = 2x - 5 \sqrt{-3}$	 Simplify second term Differentiate first term Differentiate second term Know to differentiate Differentiate Know to evaluate derivative 	4		
9.	$y = \frac{x}{x^3} - \frac{y}{x^3}$ = $x^2 \sqrt{-3} x^{-3} \sqrt{-3} \sqrt{-3}$	 Simplify second term Differentiate first term Differentiate second term Know to differentiate Differentiate Know to evaluate derivative Calculate gradient 	4		

11. $\frac{dy}{dx} = x^2 - 8x + 12\sqrt{2}$	• Know to differentiate			
dx	• Differentiate			
Stationary points exist where $\frac{dy}{dx} = 0$	• Set derivative equal to 0			
$x^2 - 8x + 12 = 0 \checkmark$	• Find <i>x</i> -coordinates of stationary points			
(x-6)(x-2)=0	• Find <i>y</i> -coordinates of			
$x = 2$ or $x = 6 \checkmark$	stationary points			
To find <i>y</i> -coordinates:	• Method to determine nature			
At $x=6$, $y=\frac{1}{3}(6)^3-4(6)^2+12(6)-3$	• Nature of one stationary			
=-3	point			
At $x=2$, $y=\frac{1}{3}(2)^3-4(2)^2+12(2)-3$	• Nature of second			
$=7\frac{2}{3}\checkmark$	stationary point			
Stationary points are at $\left(2,7\frac{2}{3}\right)$ and $\left(6,-3\right)$				
$\frac{x \rightarrow 2 \rightarrow 6 \rightarrow}{\frac{dy}{dx} + 0 - 0 + \checkmark}$ $\frac{dy}{dx} \neq - \checkmark = /$				
$\left(2,7\frac{2}{3}\right)$ is a maximum turning point \checkmark				
(6,-3) is a minimum turning point \checkmark		8		
Outcome 4 – Sequences				
12. (a) $u_{n+1} = 0.32u_n + 600$	• State recurrence relation	1		
(b) A limit <i>l</i> exists since $-1 < 0.32 < 1$	• Know how to calculate			
, 600	limit			
$l = \frac{1}{1 - 0.32} \checkmark$	• Calculate limit			
$= 882.35 \checkmark$ (to 2 d.p.)	• Interpret limit			
In the long term, the number of bacteria will				
settle around 882 million ✓		3		
		-		

1. A line passes through the points (2,-7) and (6,1).

Find the equation of this line.

A line makes an angle of 50° with the 2. positive direction of the x-axis, as shown in the diagram, where the scales on the axes are equal.

Find the gradient of the line.

3.	(a)	Write down the gradient of any line parallel to $y = \frac{1}{2}x + 3$.	(1)
		8 5 1 5)	()

Write down the **gradient** of a line perpendicular to y = -3x - 1. (b) (1)

Outcome 2

See worksheet. 4.

(b)

Diagrams 1 and 2 on the worksheet show part of the graph of y = f(x).

- On Diagram 1, draw the graph of y = -f(x). (a) (1)
- (b) On Diagram 2, draw the graph of y = f(x + 4).
- The diagrams below show part of the graph of $y = \sin x^{\circ}$ and the graph of a 5. (a) related function. Write down the equation of the related function.

(3)

6. See worksheet.

The graph of $y = 2^x$ is shown in Diagram 3 on the worksheet.

Write down the equation of the graph of the exponential function of the form $y = a^x$ which passes through the point (2,9) as shown on the worksheet. (1)

7. See worksheet.

Diagram 4 on the worksheet shows part of the graph of the function $y = 6^x$ and its inverse function.

Write down the equation of the inverse function.

8. (a) Two functions f and g are given by
$$f(x) = x^2 - 1$$
 and $g(x) = 3x - 1$.
Obtain an expression for $f(g(x))$. (1)

(b) Functions h and k, defined on suitable domains, are given by h(x) = 4x and $k(x) = \cos x$. Find k(h(x)). (1)

Outcome 3

9. Given
$$y = \frac{1+x^4}{x^2}$$
, find $\frac{dy}{dx}$. (4)

10. The diagram shows a sketch of the curve with equation $y = x^2 - 6x + 8$ with a tangent drawn at the point (5,3).

(1)

(1)

(3)

Find the gradient of this tangent.

11. Find the coordinates of the stationary points of the curve with equation $y = \frac{1}{3}x^3 - x + 1$. Using differentiation determine their nature. (8)

Outcome 4

- 12. In a small colony 20% of the existing insects are eaten by predators each day, however during the night 400 insects are hatched. There are U_n insects at the start of a particular day.
 - (a) Write down a recurrence relation for U_{n+1} , the number of insects at the start of the next day.
 - (b) Find the limit of the sequence generated by this recurrence relation and explain what the limit means in the context of this question.

Unit 1 - Practice Assessment (1)

1. A line passes through the points (-1,3) and (-4,2).

Find the equation of this line.

2. A line makes an angle of 75° with the positive direction of the *x*-axis, as shown in the diagram, where the scales on the axes are equal.

Find the gradient of the line.

3.	(a)	Write down the gradient of any line parallel to $y = -x - 2$.	(1)

(b) Write down the **gradient** of a line perpendicular to $y = \frac{3}{2}x - 1$. (1)

 $y \neq$

0

Outcome 2

4. See worksheet.

y

1

0

-1

Diagrams 1 and 2 on the worksheet show part of the graph of y = f(x).

(a) On Diagram 1, draw the graph of y = -f(x). (1)

у 2

(b) On Diagram 2, draw the graph of y = f(x-4).

 $y = \sin x^{\circ}$

180

270

5. (a) The diagrams below show part of the graph of $y = \sin x^{\circ}$ and the graph of a related function. Write down the equation of the related function.

360

90

Write down the equation of the related graph.

 75° x (1)

Marks

(3)

(1)

6. See worksheet.

The graph of $y = 3^x$ is shown in Diagram 3 on the worksheet.

Write down the equation of the graph of the exponential function of the form $y = a^x$ which passes through the point (1,6) as shown on the worksheet. (1)

7. See worksheet.

Diagram 4 on the worksheet shows part of the graph of the function $y = 7^x$ and its inverse function.

Write down the equation of the inverse function.

- 8. (a) Two functions f and g are given by $f(x) = 2x^2$ and g(x) = x + 1. Obtain an expression for f(g(x)). (1)
 - (b) Functions *h* and *k*, defined on suitable domains, are given by $h(x) = \sin x$ and $k(x) = \frac{1}{2}x$. Find k(h(x)). (1)

Outcome 3

9. Given
$$y = \frac{x^4 + 2}{x^3}$$
, find $\frac{dy}{dx}$. (4)

10. The diagram shows a sketch of the curve with equation $y = x^2 - 10x + 24$ with a tangent drawn at the point (7,3).

Find the gradient of this tangent.

11. Find the coordinates of the stationary points of the curve with equation $y = \frac{2}{3}x^3 + x^2 - 4x$. Using differentiation determine their nature. (8)

Outcome 4

12. In a small rabbit colony one eighth of the existing rabbits are eaten by predators each summer, however during the winter 24 rabbits are born. There are U_n rabbits at the start of a particular summer.

- (a) Write down a recurrence relation for U_{n+1} , the number of rabbits at the start of the next summer.
- (b) Find the limit of the sequence generated by this recurrence relation and explain what the limit means in the context of this question.

(3)

(1)

Name : Class :

Diagram 1

Diagram 2

Question 6

The equation of the graph passing through (1,6) is

Question 7

The equation of the graph passing through (1,0) is

.....

1. A line passes through the points (4,-4) and (2,6).

Find the equation of this line.

2. A line makes an angle of 40° with the positive direction of the *x*-axis, as shown in the diagram, where the scales on the axes are equal.

Find the gradient of the line.

(b) Write down the gradient of a line perpendicular to y = -x - 2. (1)

Outcome 2

4. See worksheet.

y

1

Diagrams 1 and 2 on the worksheet show part of the graph of y = f(x).

(a) On Diagram 1, draw the graph of y = -f(x) + 2. (1)

y

3

2

(b) On Diagram 2, draw the graph of y = f(x-3).

 $v = \sin x^{\circ}$

5. (a) The diagrams below show part of the graph of $y = \sin x^{\circ}$ and the graph of a related function. Write down the equation of the related function.

Marks

(3)

careful !

(1)

(1)

6. See worksheet.

The graph of $y = 5^x$ is shown in Diagram 3 on the worksheet.

Write down the equation of the graph of the exponential function of the form $y = a^x$ which passes through the point (1,2) as shown on the worksheet. (1)

7. See worksheet.

Diagram 4 on the worksheet shows part of the graph of the function $y = 3^x$ and its inverse function.

Write down the equation of the inverse function.

- 8. (a) Two functions f and g are given by $f(x) = x^2 + x$ and g(x) = 3x + 1. Obtain an expression for f(g(x)). (1)
 - (b) Functions k and h, defined on suitable domains, are given by $k(x) = \cos x$ and $h(x) = (2x + \pi)$. Find k(h(x)). (1)

Outcome 3

9. Given
$$y = \frac{3+x^6}{x^4}$$
, find $\frac{dy}{dx}$. (4)

10. The diagram shows a sketch of the curve with equation $y = x^2 - 12x + 35$ with a tangent drawn at the point (4,3).

 $y = x^2 - 12x + 35$ (4,3) 0 x (4)

Find the gradient of this tangent.

11. Find the coordinates of the stationary points of the curve with equation $y = x^3 - 3x^2 - 9x + 15$. Using differentiation determine their nature. (8)

Outcome 4

(b)

- 12. For an established ant hill 6% of the worker ants fail to return at the end of each day. However, during the night 540 worker ants are hatched. There are U_n worker ants at the start of a particular day.
 - (a) Write down a recurrence relation for U_{n+1} , the number of worker ants at the start of the next day.
 - Find the limit of the sequence generated by this recurrence relation and explain
 - what the limit means in the context of this question.

(1)

Diagram 2

Question 6

The equation of the graph passing through (1,2) is

Question 7

The equation of the graph passing through (1,0) is

.....

Unit 1 - Practice Assessments

Answers

Practice Assessment 1

Outcome 1 :	1.	m = 2, $y = 2x - 11$ ($y - 1 = 2(x - 6)$ or $y + 7 = 2(x - 2)$)
	2.	$m = 1.19$ 3. (a) $m = \frac{1}{2}$ (b) $m = \frac{1}{3}$
Outcome 2 :	4.	(a) diagram (reflection in x-axis) (b) diagram (translated 4 units left)
	5.	(a) $y = \sin x^{\circ} - 1$ (b) $y = \sin 3x^{\circ}$ 6. $y = 3^{x}$ 7. $y = \log_{6} x$
	8.	(a) $f(g(x)) = (3x-1)^2 - 1 \implies 9x^2 - 6x$ (b) $k(h(x)) = \cos 4x$
Outcome 3 :	9.	$\frac{dy}{dx} = -2x^{-3} + 2x \qquad 10. \qquad m = 4 \qquad 11. \qquad (-1, \frac{5}{3}) \ , \ \max \ , \ \ (1, \frac{1}{3}) \ , \ \min $
Outcome 4 :	12.	(a) $U_{n+1} = 0.8U_n + 400$ (b) $L = 2000$, + explanation

Practice Assessment 2

Outcome 1 :	1.	$m = \frac{1}{3}$, $3y = x + 10$	($(y-3) = \frac{1}{3}(x+1)$	1) or $y - 2 = -2$	$\frac{1}{3}(x+4)$)
	2.	$m = 3 \cdot 73$	3. ((a) $m = -1$	1	(b)	$m=-\tfrac{2}{3}$
Outcome 2 :	4.	(a) diagram (reflection	in <i>x</i> -axis)) (b) dia	gram (translated	l 4 units r	right)
	5.	(a) $y = \sin x^{\circ} + 1$ (b)	$y = \sin x$	4 <i>x</i> ° 6.	$y = 6^x$	7.	$y = \log_7 x$
	8.	(a) $f(g(x)) = 2(x + x)$	$(+1)^2 \Rightarrow$	$2x^2 + 4x + 2$	(b)	k(h(x))	$=\frac{1}{2}\sin x$
Outcome 3 :	9.	$\frac{dy}{dx} = 1 - 6x^{-4}$	1 0. 7	m = 4	11. $(-2, 6\frac{2}{3})$), max	, $(1,-2\frac{1}{3})$, min
Outcome 4 :	12.	(a) $U_{n+1} = \frac{7}{8}U_n + 2$	4	(b)	L = 192 , +	explanati	on

Practice Assessment 3

Outcome 1 :	1.	m = -5, $y = -5x + 16$ ($y + 4 = -5(x - 4)$ or $y - 6 = -5(x - 2)$)
	2.	$m = 0.84$ 3. (a) $m = -\frac{3}{4}$ (b) $m = 1$
Outcome 2 :	4.	(a) diagram (reflection in <i>x</i> -axis then up 2) (b) diagram (translated 3 units right)
	5.	(a) $y = 2\sin x^{\circ} + 1$ (b) $y = \sin \frac{1}{2}x^{\circ}$ 6. $y = 2^{x}$ 7. $y = \log_{3} x$
	8.	(a) $f(g(x)) = (3x+1)^2 + 3x + 1 \implies 9x^2 + 9x + 2$ (b) $k(h(x)) = \cos(2x + \pi)$
Outcome 3 :	9.	$\frac{dy}{dx} = -12x^{-5} + 2x$ 10. $m = -4$ 11. $(-1,20)$, max, $(3,-12)$, min
Outcome 4 :	12.	(a) $U_{n+1} = 0.94U_n + 540$ (b) $L = 9000$, + explanation