Advanced Higher Practice Paper (3 hours)

- A1. (a) Find partial fractions for $\frac{9}{x^2 4}$
 - (b) Hence obtain $\int \frac{x^2}{x^2 4} dx$
- A2. Use the substitution $u = 7 x^3$ to evaluate the integral

$$\int \frac{x^2}{7-x^3} dx$$

A3. Use Gaussian elimination to solve the system of linear equations

$$x + y + z = 0$$

$$-y - z = 1$$

$$x + 2y + z = 15$$

- A4. Find $\frac{dy}{dx}$ at (1,2) if $x^2 + 3xy + y^2 = 11$
- A5. A horizontal firing torpedo has an acceleration (until its fuel runs out) of

$$a = 9 + 12t - 0.5t^2$$

where a is the acceleration (m/s/s) and t is the time in seconds

- (a) Obtain a formula for its speed, t seconds after firing
- (b) The torpedo has enough fuel for 7 seconds. What horizontal distance would it have covered when it ran out of fuel?
- A6. Let $u_1, u_2, u_3 \dots u_n$ be an arithmetic sequence and v_1, v_2, v_3, v_n be a geometric sequence $u_1=v_1=45$ and $u_5=v_3=5$
 - (a) Find u_{11}
 - (b) Give that the geometric sequence is a series of positive numbers calculate $\sum_{n=1}^{\infty} v_n$
- A7. Use induction to prove $5^{2n-1} + 1$ is divisible by 6.
- A8. Let $z = \cos \theta + i \sin \theta$
 - (a) Find the real and imaginary parts of z⁶
 - (b) Use de Moivre's theorem to write down an expression for z^6 in terms of θ
 - (c) Use your answers to (a) and (b) to express $\cos 6\theta$ in terms of $\cos \theta$ and $\sin \theta$

$$\int \frac{6x^2 + 20x + 9}{x^3 + 2x^2 + x} \, \mathrm{d}x$$

- Let the function f be given by $f(x) = 2^x \cos x$ A10.
 - (a) Where does the function cross the y axis?
 - (b) Find the stationary points.
 - (c) Sketch the graph of y=f(x)
- B1. Use the Euclidean Algorithm to find integers of x and y such that

$$408x + 126y = 6$$

(a) Show that $\frac{d}{dx}(\ln(\ln x)) = \frac{1}{x \ln x}$ and hence solve the differential equation B2.

$$x \ln x \frac{dy}{dx} + y = 2 \ln x$$
 given that $y = 2$ when $x = e$.

Show, by means of the substitution $x = e^{t}$, that the differential equation

$$x^{2} \frac{d^{2}y}{dx^{2}} - 6x \frac{dy}{dx} + 6y = x^{2} + \ln x$$

reduces to
$$\frac{d^2y}{dt^2} - 7\frac{dy}{dt} + 6y = e^{2t} + t.$$

- Use Maclaurin's theorem to write down the expansions, as far as x^3 , of B3.
 - (i)
 - (ii)
- For the matrix A = $\begin{pmatrix} -1 & 4 & 1 \\ 2 & -3 & 1 \\ 1 & 2 & -1 \end{pmatrix}$ B4.
 - (a) Show that it is invertible ie |A|=0 (b) Find A^{-1}

 - (c) Solve the matrix equations AX=B where $x = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$ and $B = \begin{pmatrix} 2 \\ -1 \\ 3 \end{pmatrix}$