Straight Line Theory

Created by
Graduate Bsc (Hons) MathsSci (Open) GIMA

Standard form for a straight line is $y=m x+c \quad$ or $\quad y-b=m(x-a)$
$m=$ gradient
$(a, b)=$ point on the line
$c=$ value where line crosses y-axis

1. To find the equation of a line you need to know:-

Two points $A\left(x_{1}, y_{1}\right)$ and $B\left(x_{2}, y_{2}\right)$
or

One point and the gradient (m)

A ($x 1, y 1$) and (m)

Straight Line Theory

Created by
Graduate Bsc (Hons) MathsSci (Open) GIMA
2. Gradient (m) is found by evaluating

$$
m=\frac{\left(y_{2}-y_{1}\right)}{\left(x_{2}-x_{1}\right)}
$$

3. A straight line crosses x-axis at $(x, 0)$ and the y-axis at $(0, C)$.
4. Two lines are perpendicular (at right angles) to each other if:-

$$
\mathrm{m}_{1} \cdot \mathrm{~m}_{2}=-1
$$

5. The point of intersection of 2 lines can be found by solving:-

$$
\text { Line one }=\text { Line two }
$$

$$
\begin{gathered}
\mathrm{Y}_{1}=\mathrm{Y}_{2} \\
\mathrm{~m}_{1} \cdot \mathrm{x}_{1}+\mathrm{C}_{1}=\mathrm{m}_{2} \cdot \mathrm{x}_{2}+\mathrm{C}_{2}
\end{gathered}
$$

6. The angle between the line and the x-axis is given by

$$
\theta=\tan ^{-1}(m) \quad m=\text { gradient }
$$

Straight Line Theory

Created by
Graduate Bsc (Hons) MathsSci (Open) GIMA

1. Find the equation (1) of the line that passes through the points A $(1,4)$ and $B(2,6)$.

Also find the equation (2) of the line with gradient $m=-0.5$ and passing through the point $(2,-1)$.

Solution

Equation (1)

$m_{1}=\frac{\left(y_{2}-y_{1}\right)}{\left(x_{2}-x_{1}\right)}=\frac{(6-4)}{(2-1)}=2$

Choosing point $B(2,6)$
$c_{1}=y-m \cdot x=6-2 \cdot(2)=2$

Hence equation (1) is

$$
y=2 \cdot x+2
$$

Equation (2)

$m_{2}=-0.5$
Point given is (2,-1)
$c_{2}=y-m \cdot x=-1-(-0.5) \cdot 2=0$

Hence equation (2) is

$$
y=\frac{-1}{2} \cdot x
$$

Straight Line Theory

Created by
Graduate Bsc (Hons) MathsSci (Open) GIMA
2. Find the points were the equations (1) and (2) cut the x and y axises.

Solution

Equation (1)
When $x=0$ then $y=c=2$; Hence y-axis is cut at $(0, c)=(0,2)$
When $\mathrm{y}=0$ then
$0=2 \cdot x+2$
$x=\frac{-2}{2}=-1$

Hence x-axis is cut at $(-1,0)$

Equation (2)

When $x=0$ then $y=c=0$; Hence y-axis is cut at $(0, c)=(0,0)$
When $\mathrm{y}=0$ then
$0=\frac{-1}{2} \cdot \mathrm{x}$
$x=\frac{2 \cdot 0}{-1}=0$
Hence x-axis is cut at $(0,0)$

Straight Line Theory

Created by
Graduate Bsc (Hons) MathsSci (Open) GIMA
3. Show that the 2 lines are perpendicular to each other.

Solution

If perpendicular to each other then the following is true.
$\mathrm{m}_{1}=2$
$m_{1} \cdot m_{2}=-1$
$m_{2}=\frac{-1}{2}$
$2 \cdot\left(\frac{-1}{2}\right)=-1$

Hence lines are perpendicular.

Straight Line Theory

Created by
Graduate Bsc (Hons) MathsSci (Open) GIMA
4. Find the point where the lines intersect.

Solution

Where both lines intersect we have.
line $_{1}=$ line $_{2}$
$m_{1} \cdot x_{1}+c_{1}=m_{2} \cdot x_{2}+c_{2}$
$2 \cdot x+2=\left(\frac{-1}{2} \cdot x+0\right)$
At the point of intersect!
$x_{1}=x_{2}$
$2 \cdot x+\frac{1}{2} \cdot x=-2 \quad \frac{5}{2} \cdot x=-2 \quad x=\frac{-4}{5}$

Substituting $x=\frac{-4}{5}$
Into one of the original equations ((1) or (2) it does not matter which one as either one is equally valid) we get:

Equation (1) $\quad y=2 \cdot x+2$

$$
\mathrm{y}=2 \cdot\left(\frac{-4}{5}\right)+2=\frac{-8}{5}+\frac{10}{5}=\frac{2}{5} \quad \text { Point is }\left(\frac{-4}{5}, \frac{2}{5}\right)
$$

Straight Line Theory

Created by
Graduate Bsc (Hons) MathsSci (Open) GIMA

Equation (2) $\quad y=\frac{-1}{2} \cdot x$

$$
y=\frac{-1}{2} \cdot\left(\frac{-4}{5}\right)=\frac{4}{10}=\frac{2}{5} \quad \text { Point is }\left(\frac{-4}{5}, \frac{2}{5}\right)
$$

5. Find the angle made by line (1) and the positive x-axis and repeat for line (2).

Solution
$\theta_{1}=\tan ^{-1}\left(\mathrm{~m}_{1}\right)=\tan ^{-1}(2)=63.4^{\circ}$
$\theta_{2}=\tan ^{-1}\left(m_{2}\right)=\tan ^{-1}\left(\frac{-1}{2}\right)=180^{\circ}-26.6^{\circ}=153.4^{0}$

Second quadrant!

