Rearranging Equations

Created by
Graduate Bsc (Hons) MathsSci (Open) GIMA

Making a parameter the subject of an equation is carried out by simply applying the rules of arithmetic.

Remember the golden rules:-
"To keep both sides of an equation equal what ever you do to one side you MUST do to the other whether it is addition, subtraction, multiplication or division. "

AND
"If you are multiplying or dividing you must do it to EVERY TERM in the equation not just some terms."

Addition: Make L the subject of the equation.

$$
L-2=h-t
$$

If we add 2 to each side we get

$$
\begin{aligned}
& \mathrm{L}-2+2=\mathrm{h}-\mathrm{t}+2 \\
& \mathrm{~L}=\mathrm{h}-\mathrm{t}+2
\end{aligned}
$$

Rearranging Equations

Created by
Graduate Bsc (Hons) MathsSci (Open) GIMA

Subtraction: Make x the subject of the equation

$$
x+2 y=p^{2}-q
$$

If we subtract $2 y$ from each side we get

$$
\begin{aligned}
& x+2 y-2 y=p^{2}-q-2 y \\
& x=p^{2}-q-2 y
\end{aligned}
$$

Multiplication: Make b the subject of the equation.

$$
\frac{1}{2} x+y=y^{2}+c
$$

If we multiply each term by 2 (remember you MUST do ALL terms)

$$
\begin{aligned}
& 2 \frac{1}{2} x+2 y=2 \cdot y^{2}+2 c \\
& x+2 y=2 y^{2}+2 c
\end{aligned}
$$

If we subtract $2 y$ from each side we get

$$
\begin{aligned}
& x+2 y-2 y=2 y^{2}+2 c-2 y \\
& x=2 y^{2}+2 c-2 y
\end{aligned}
$$

Rearranging Equations

Created by
Graduate Bsc (Hons) MathsSci (Open) GIMA

Division: \quad Make (f) the subject of the equation

$$
f \cdot g+2=z
$$

If we divide though by g (remember you MUST do ALL terms)

$$
\begin{aligned}
& \frac{\mathrm{f} \cdot \mathrm{~g}}{\mathrm{~g}}+\frac{2}{\mathrm{~g}}=\frac{\mathrm{z}}{\mathrm{~g}} \\
& \mathrm{f}+\frac{2}{\mathrm{~g}}=\frac{\mathrm{z}}{\mathrm{~g}} \\
& \frac{\mathrm{f} \cdot \mathrm{~g}}{\mathrm{~g}}+\frac{2}{\mathrm{~g}}-\frac{2}{\mathrm{~g}}=\frac{\mathrm{z}}{\mathrm{~g}}-\frac{2}{\mathrm{~g}}
\end{aligned}
$$

If we subtract $2 / g$ from each side we get

$$
\mathrm{f}=\frac{\mathrm{z}}{\mathrm{~g}}-\frac{2}{\mathrm{~g}}
$$

