Logs and Exponential (Powers) Examples

Created by
Graduate Bsc (Hons) MathsSci (Open) GIMA

Q1. Simplify the following:-

$$
\begin{array}{ll}
a^{4} \cdot a^{7} & \log _{10}(2)+\log _{10}(32) \\
\frac{a^{7}}{a^{4}} & \log _{10}(32)-\log _{10}(2) \\
\left(a^{4}\right)^{7} \cdot a^{5} & \log _{10}(2)+\log _{10}(40)-\log _{10}(8)
\end{array}
$$

Solution

$$
\begin{array}{ll}
a^{4} \cdot a^{7}=a^{(4+7)}=a^{11} & \log _{10}(2)+\log _{10}(32)=\log _{10}(64) \\
\frac{a^{7}}{a^{4}}=a^{7-3}=a^{4} & \log _{10}(32)-\log _{10}(2)=\log _{10}\left(\frac{32}{2}\right)=\log _{10}(16) \\
\left(a^{4}\right)^{7} \cdot a^{5}=a^{7 \cdot 4} \cdot a^{5}=a^{28+5}=a^{33} & \log _{10}(2)+\log _{10}(40)-\log _{10}(8)=\log _{10}\left(\left(\frac{2 \cdot 40}{8}\right)\right)=\log _{10}(10)=1
\end{array}
$$

Logs and Exponential (Powers) Examples

Created by
Graduate Bsc (Hons) MathsSci (Open) GIMA

Q2. We suspect the 2 parameters x, y are related by the following relationship.

$$
y=a \cdot x^{b}
$$

Using the graph provided determine if this relationship seems reasonable (explain why!) and find values for a and b and write out the full equation.

Logs and Exponential (Powers) Examples

Created by
Graduate Bsc (Hons) MathsSci (Open) GIMA

Solution

Since the graph is a straight line of the form $\log _{e}(y)=b * \log _{e}(x)+\log _{e}(a)$ then it is reasonable to assume the relationship above.

From the graph the gradient is $b=2$ and the constant is $\log _{e}(a)=1$.
Hence the equation is

We have the form
$\log _{e}(y)=\log _{e}(a)+b \cdot \log _{e}(x)$
$b=2 \quad$ and $\quad \log _{e}(a)=1 \quad$ therefore $\quad a=e$

We have

$$
\log _{e}(y)=\log _{e}(e)+2 \cdot \log _{e}(x)
$$

taking antilogs of both sides and using log/power rules we have

$$
y=e \cdot x^{2}
$$

Logs and Exponential (Powers) Examples

Created by
Graduate Bsc (Hons) MathsSci (Open) GIMA

Q3. We suspect the 2 parameters x, y are related by the following relationship.

$$
y=a \cdot b^{x}
$$

Using the graph provided determine if this relationship seems reasonable (explain why!) and find values for a and b and write out the full equation.

Logs and Exponential (Powers) Examples

Created by
Graduate Bsc (Hons) MathsSci (Open) GIMA

Solution

Since the graph is a straight line of the form $\log _{e}(y)=\log _{e}(b)^{\star}(x)+\log _{e}(a)$ then it is reasonable to assume the relationship above.

From the graph the gradient is $\log _{e}(b)=1$ and the constant is $\log _{e}(a)=2$.
Hence the equation is

We have the form

$$
\begin{gathered}
\log _{e}(y)=\log _{e}(a)+\log _{e}(b) \cdot(x) \\
\log _{e}(b)=1 \quad \text { and } \quad \log _{e}(a)=2 \quad \text { therefore } \quad b=e \quad a=e^{2}
\end{gathered}
$$

We have

$$
\log _{e}(y)=\log _{e}\left(\mathrm{e}^{2}\right)+\log _{\mathrm{e}}(\mathrm{e}) \cdot \mathrm{x}
$$

taking antilogs of both sides and using log/power rules we have

$$
y=e^{2} \cdot e^{x}=e^{2+x}
$$

