Scottish Higher Still Course

Vector Examples

Created by
Graduate Bsc (Hons) MathsSci (Open) GIMA

Q1. Which of these quantities are vectors?
Speed, distance, time, velocity, force

Solution

Speed	-	not a vector has magnitude only.
Distance	-	not a vector has magnitude only.
Time	-	not a vector has magnitude only.
Velocity	-	is a vector it has magnitude and direction.
Force	-	is a vector it has magnitude and direction.

Q2. Find the magnitude of the vector below.

$$
\underline{v}=\left(\begin{array}{l}
3 \\
0 \\
4
\end{array}\right)
$$

Solution

$$
|\underline{v}|=\sqrt{(3)^{2}+(0)^{2}+(4)^{2}}=5
$$

Vector Examples

Created by
Graduate Bsc (Hons) MathsSci (Open) GIMA

Q3. Are the following vectors equal?

$$
\underline{\mathrm{v}}=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) \quad \underline{\mathrm{w}}=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)
$$

Solution

No they have the same magnitude of 1 , but their directions are different, \underline{v} points along the x-axis and \underline{w} points along the y-axis.

Q4. Find $\underline{a}+\underline{b}$ and $\underline{a}-\underline{b}$ for the vectors below.

$$
\underline{\mathrm{a}}=\left(\begin{array}{l}
6 \\
3 \\
2
\end{array}\right) \quad \underline{\mathrm{b}}=\left(\begin{array}{l}
2 \\
1 \\
0
\end{array}\right)
$$

Solution

$$
\underline{a}+\underline{b}=\left(\begin{array}{l}
6 \\
3 \\
2
\end{array}\right)+\left(\begin{array}{l}
2 \\
1 \\
0
\end{array}\right)=\left(\begin{array}{l}
8 \\
4 \\
2
\end{array}\right) \quad \underline{a}+\underline{b}=\left(\begin{array}{l}
6 \\
3 \\
2
\end{array}\right)-\left(\begin{array}{l}
2 \\
1 \\
0
\end{array}\right)=\left(\begin{array}{l}
4 \\
2 \\
2
\end{array}\right)
$$

Vector Examples

Created by
Graduate Bsc (Hons) MathsSci (Open) GIMA

Q5. Find the negative of the vector below.

$$
\underline{v}=\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right)
$$

Solution

$$
\underline{v}=\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right) \quad-\underline{v}=\left(\begin{array}{c}
-1 \\
-2 \\
-3
\end{array}\right)
$$

Q6. Find the scalar multiple of the vector below when $k=1 / 2$ and $k=-2$. Describe the effect that k has on the vector in each case.

Solution

$$
\underline{v}=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right) \quad \underline{v}=\frac{1}{2}\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)=\left(\begin{array}{l}
0 \\
\frac{1}{2} \\
0
\end{array}\right) \quad-2 \underline{v}=-2\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)=\left(\begin{array}{c}
0 \\
-2 \\
0
\end{array}\right)
$$

Vector Examples

Created by
Graduate Bsc (Hons) MathsSci (Open) GIMA

Q7. Are the points $A(1,1), B(2,2)$ and $C(4,4)$ collinear, explain your answer.

Solution
If collinear then $A B=k A C$
$\overrightarrow{\mathrm{AB}}=\mathrm{k} \cdot \overrightarrow{\mathrm{AC}}$
$\binom{2}{2}-\binom{1}{1}=\mathrm{k} \cdot\left[\binom{4}{4}-\binom{1}{1}\right]$
$\binom{1}{1}=\mathrm{k} \cdot\binom{3}{3}$
$\binom{1}{1}=\frac{1}{3} \cdot\binom{3}{3}$

Scottish Higher Still Course

www.mathsrevision.com

Vector Examples

Created by
Graduate Bsc (Hons) MathsSci (Open) GIMA

Q8. Find the mid-point \underline{m} between the vectors below.

$$
\underline{a}=\left(\begin{array}{l}
2 \\
4 \\
8
\end{array}\right) \quad \underline{b}=\left(\begin{array}{c}
2 \\
10 \\
12
\end{array}\right)
$$

Solution

$$
\begin{gathered}
m=1 / 2(\underline{a}+\underline{b}) \\
\underline{m}=\frac{1}{2} \cdot\left[\left(\begin{array}{l}
2 \\
4 \\
8
\end{array}\right)+\left(\begin{array}{c}
2 \\
10 \\
12
\end{array}\right)\right]=\left(\begin{array}{c}
2 \\
7 \\
10
\end{array}\right)
\end{gathered}
$$

Vector Examples

Created by
Graduate Bsc (Hons) MathsSci (Open) GIMA

Q9. Find the coordinates of the point P if it splits $A(3,3,6)$ and $B(6,12,18)$ in the ratio $1: 2$.

Solution

$$
\begin{aligned}
& 2 \overrightarrow{\mathrm{AP}}=\overrightarrow{\mathrm{PB}} \\
& 2(\underline{p}-\underline{\mathrm{a}})=(\underline{\mathrm{b}}-\underline{\mathrm{p}}) \\
& 3 \underline{p}=\underline{\mathrm{b}}-2 \underline{\mathrm{a}} \\
& \underline{p}=\frac{\underline{\mathrm{b}}-2 \underline{\mathrm{a}}}{3} \\
& \underline{p}=\frac{\left(\begin{array}{c}
6 \\
12 \\
18
\end{array}\right)-2\left(\begin{array}{l}
3 \\
3 \\
6
\end{array}\right)}{3} \\
& \underline{p}=\left(\begin{array}{l}
0 \\
2 \\
2
\end{array}\right)
\end{aligned}
$$

Vector Examples

Created by
Graduate Bsc (Hons) MathsSci (Open) GIMA

Q10. Find the angle between the vectors below.

$$
\underline{a}=\left(\begin{array}{l}
1 \\
0 \\
2
\end{array}\right) \quad \underline{b}=\left(\begin{array}{l}
2 \\
3 \\
5
\end{array}\right)
$$

Solution

$$
\begin{aligned}
& |a|=\sqrt{(1)^{2}+(0)^{2}+(2)^{2}}=\sqrt{5} \\
& |b|=\sqrt{(2)^{2}+(3)^{2}+(5)^{2}}=\sqrt{38} \\
& a \cdot b=[(1 \cdot 2)+(0 \cdot 3)+(2 \cdot 5)]=12 \\
& \cos \theta=\frac{12}{\sqrt{5} \cdot \sqrt{38}}=0.871 \\
& \theta=29.4 \text { degrees }
\end{aligned}
$$

Vector Examples

Created by
Graduate Bsc (Hons) MathsSci (Open) GIMA

Q11. Are the vectors below perpendicular to each other?

$$
\underline{\mathrm{a}}=\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right) \quad \underline{\mathrm{b}}=\left(\begin{array}{l}
0 \\
0 \\
4
\end{array}\right)
$$

Solution

$$
\underline{\mathrm{a}} \cdot \underline{\mathrm{~b}}=[(0 \cdot 0)+(1 \cdot 0)+(0 \cdot 4)]=0
$$

Vectors are perpendicular since the scalar/dot product $\underline{a} \cdot b=\underline{0}$

Q12. Express the vector below in terms of the base vectors $\underline{i}, \mathfrak{j}$, and \underline{k}.

$$
\underline{\mathrm{w}}=\left(\begin{array}{c}
13 \\
-5 \\
-2
\end{array}\right)
$$

Solution

$$
\begin{aligned}
& \underline{\mathrm{w}}=\left(\begin{array}{l}
13 \\
-5 \\
-2
\end{array}\right) \\
& \underline{\mathrm{w}}=13\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)-5\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)-2\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)=\left(\begin{array}{c}
13 \\
-5 \\
-2
\end{array}\right)
\end{aligned}
$$

$$
\underline{w}=13 \cdot \underline{i}-5 \cdot \underline{i}-2 \cdot \underline{k}
$$

