Scottish Higher Still Course

www.mathsrevision.com

Vector Examples

Created by Graduate Bsc (Hons) MathsSci (Open) GIMA

Q1. Which of these quantities are vectors?

Speed, distance, time, velocity, force

<u>Solution</u>

Speed	-	not a vector has magnitude only.
Distance	-	not a vector has magnitude only.
Time	-	not a vector has magnitude only.
Velocity	-	is a vector it has magnitude and direction
Force	-	is a vector it has magnitude and direction

Q2. Find the magnitude of the vector below.

$$\underline{\mathbf{v}} = \begin{pmatrix} 3\\0\\4 \end{pmatrix}$$

Solution

$$|\underline{\mathbf{v}}| = \sqrt{(3)^2 + (0)^2 + (4)^2} = 5$$

Q3. Are the following vectors equal?

$$\underline{\mathbf{v}} = \begin{pmatrix} 1\\0\\0 \end{pmatrix} \qquad \qquad \underline{\mathbf{w}} = \begin{pmatrix} 0\\1\\0 \end{pmatrix}$$

Solution

No they have the same magnitude of 1, but their directions are different, \underline{v} points along the x-axis and \underline{w} points along the y-axis.

Q4. Find $\underline{a+b}$ and $\underline{a-b}$ for the vectors below.

$$\underline{a} = \begin{pmatrix} 6\\3\\2 \end{pmatrix} \qquad \qquad \underline{b} = \begin{pmatrix} 2\\1\\0 \end{pmatrix}$$

Solution

$$\mathbf{a} + \mathbf{b} = \begin{pmatrix} 6\\3\\2 \end{pmatrix} + \begin{pmatrix} 2\\1\\0 \end{pmatrix} = \begin{pmatrix} 8\\4\\2 \end{pmatrix} \qquad \mathbf{a} + \mathbf{b} = \begin{pmatrix} 6\\3\\2 \end{pmatrix} - \begin{pmatrix} 2\\1\\0 \end{pmatrix} = \begin{pmatrix} 4\\2\\2 \end{pmatrix}$$

Q5. Find the negative of the vector below.

$$\underline{\mathbf{v}} = \begin{pmatrix} 1\\ 2\\ 3 \end{pmatrix}$$

Solution

	(1)	1	(-1)
<u>v</u> =	2	- <u>v</u> =	-2
	(3)		(-3)

Q6. Find the scalar multiple of the vector below when k= 1/2 and k= -2. Describe the effect that k has on the vector in each case.

<u>Solution</u>

$$\underline{\mathbf{x}} = \begin{pmatrix} 0\\1\\0 \end{pmatrix} \qquad \underline{\mathbf{x}} = \frac{1}{2} \begin{pmatrix} 0\\1\\0 \end{pmatrix} = \begin{pmatrix} 0\\\frac{1}{2}\\0 \end{pmatrix} \qquad -2\underline{\mathbf{x}} = -2 \begin{pmatrix} 0\\1\\0 \end{pmatrix} = \begin{pmatrix} 0\\-2\\0 \end{pmatrix}$$

Q7. Are the points A (1, 1), B (2, 2) and C (4, 4) collinear, explain your answer.

Solution

If collinear then AB = kAC

$$\overrightarrow{AB} = \overrightarrow{k \cdot AC}$$

$$\begin{pmatrix} 2 \\ 2 \end{pmatrix} - \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \overrightarrow{k \cdot \begin{pmatrix} 4 \\ 4 \end{pmatrix}} - \begin{pmatrix} 1 \\ 1 \end{pmatrix} \end{bmatrix}$$

 $\begin{pmatrix} 1\\1 \end{pmatrix} = k \cdot \begin{pmatrix} 3\\3 \end{pmatrix}$ $\begin{pmatrix} 1\\1 \end{pmatrix} = \frac{1}{3} \cdot \begin{pmatrix} 3\\3 \end{pmatrix}$

Q8. Find the mid-point <u>m</u> between the vectors below.

$$\underline{a} = \begin{pmatrix} 2\\4\\8 \end{pmatrix} \qquad \underline{b} = \begin{pmatrix} 2\\10\\12 \end{pmatrix}$$

<u>Solution</u>

$$\underline{\mathbf{m}} = \frac{1}{2} \cdot \begin{bmatrix} 2\\4\\8 \end{bmatrix} + \begin{bmatrix} 2\\10\\12 \end{bmatrix} = \begin{bmatrix} 2\\7\\10 \end{bmatrix}$$

Q9. Find the coordinates of the point P if it splits A (3, 3, 6) and B (6, 12, 18) in the ratio 1:2.

Solution

 $\overrightarrow{AP} = \overrightarrow{PB}$ $2(\underline{p} - \underline{a}) = (\underline{b} - \underline{p})$ $3\underline{p} = \underline{b} - 2\underline{a}$ $p = \frac{\underline{b} - 2\underline{a}}{3}$ $p = \frac{\begin{pmatrix} 6\\12\\18 \end{pmatrix} - 2\begin{pmatrix} 3\\3\\6 \end{pmatrix}}{3}$ $p = \frac{\begin{pmatrix} 0\\2\\2 \end{pmatrix}}{3}$

Q10. Find the angle between the vectors below.

$$\underline{\mathbf{a}} = \begin{pmatrix} 1\\ 0\\ 2 \end{pmatrix} \qquad \qquad \underline{\mathbf{b}} = \begin{pmatrix} 2\\ 3\\ 5 \end{pmatrix}$$

Solution

$$|\mathbf{a}| = \sqrt{(1)^2 + (0)^2 + (2)^2} = \sqrt{5}$$

 $|\mathbf{b}| = \sqrt{(2)^2 + (3)^2 + (5)^2} = \sqrt{38}$

 $\mathbf{a} \cdot \mathbf{b} = [(1 \cdot 2) + (0 \cdot 3) + (2 \cdot 5)] = 12$

$$\cos \theta = \frac{12}{\sqrt{5} \cdot \sqrt{38}} = 0.871$$

 $\theta = 29.4 degrees$

Q11. Are the vectors below perpendicular to each other?

	$\left(0\right)$		(0)
<u>a</u> =	1	<u>b</u> =	0
	$\left(0 \right)$		(4)

Solution

 $\underline{\mathbf{a}} \cdot \underline{\mathbf{b}} = [(0 \cdot 0) + (1 \cdot 0) + (0 \cdot 4)] = 0$

Vectors are perpendicular since the scalar/dot product $\underline{a}.b = \underline{0}$

Q12. Express the vector below in terms of the base vectors \underline{i} , \underline{j} , and \underline{k} .

$$\underline{\mathbf{w}} = \begin{pmatrix} 13\\ -5\\ -2 \end{pmatrix}$$

Solution

$$\mathbf{W} = \begin{pmatrix} 13 \\ -5 \\ -2 \end{pmatrix}$$
$$\mathbf{W} = 13 \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} - 5 \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} - 2 \begin{pmatrix} 0 \\ 0 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 13 \\ -5 \\ -2 \end{pmatrix}$$

 $\underline{\mathbf{w}} = 13 \cdot \underline{\mathbf{i}} - 5 \cdot \underline{\mathbf{j}} - 2 \cdot \underline{\mathbf{k}}$